


MICRODUCT NESTOR OPTIMUS DB N X 14/10 MM

Application Microduct / duct bundle for direct buried installation or installation in existing

protective pipes or cable shafts.

Construction Material The individual ducts are made of HDPE.

Colour coding The ducts are colour-coded according to customer

specifications, FIN 2012, ANSI/TIA, IEC or other.

Trace wire Duct bundles can be equipped with a tracer wire

according to customer specifications.

Outer sheath The duct bundles are sheathed with a common HDPE

sheath. The nominal sheath thickness is $1,0 \pm 0,1$ mm. Sheath marking is printed on one-meter intervals. The sheath marking is printed according to customer

specifications.

Nominal dimensions of bare duct without outer sheath						
Duct type	Dimensions [mm]		Weight [kg/km]	Toncilo etronath		
	Outer Diameter	Wall Thickness	weight [kg/kill]	Tensile strength		
14/10 mm	$14,0 \pm 0,2$	1,92,2	72	700 N		

	Nominal dimensions of ducts and duct bundles with outer sheath						
Co	Configuration Diameter [mm]		Moight [kg/km]	Tanaila atranath			
Count	Grouping	Duct OD	Maximum OD	Weight [kg/km]	Tensile strength		
2	2 x 14/10 mm	$14,0 \pm 0,2$	30,0	215	2100 N		
3	3 x 14/10 mm	$14,0 \pm 0,2$	30,0	308	3010 N		
4	4 x 14/10 mm	$14,0 \pm 0,2$	40,3	386	3780 N		
5	5 x 14/10 mm	$14,0 \pm 0,2$	44,0	467	4570 N		
7	7 x 14/10 mm	$14,0 \pm 0,2$	44,0	628	6150 N		

Temperature ranges				
Temperature range	Installation	-15 - +40 °C		
	Transport, storage and operation	-45 - +60 °C		

© Nestor Cables Ltd. 2020. 22.4.2020

The information contained within this document must not be copied, reprinted or reproduced in any form, either wholly or in part, without the prior written consent of Nestor Cables Ltd. The information is believed to be correct at the time of issue. Nestor Cables Ltd. reserves the right to amend this specification without notice. This specification is not contractually valid unless specifically authorized by Nestor Cables Ltd.

Microduct Specification Nestor Optimus DB n x 14/10 mm

Mechanical characteristics						
Characteristics	Test Methods	Descriptions		Requirements		
Tensile strength (*)	IEC 60794-1-21, method E1	Test length Duration	>1 m 10 min	Load = 9,81 x W [N] W = mass of 1 km [kg/km]		
Bending (cold) (*)	IEC 60794-1-21, method E11B	Temperature Cycles	-15 ℃ 10	Mandrel diameter 30 x OD		
Repeated bending (*)	IEC 60794-1-21, method E6	Load Cycles Time per cycle	20 N 35 ~2 s	Bending diameter 30 x OD		
Impact (*)	IEC 60794-1-21, method E4	Anvil diameter Surface radius Recovery time	50 mm 300 mm 1 hour	Impact energy 15 J		
Torsion (*)	IEC 60794-1-21, method E7	Test length Load Cycles	1 m 20 N 5	Number of turns ±1 (360° in both directions)		
Kink (*)	IEC 60794-1-21, method E10	Temperature	20 °C	Loop diameter 20 x OD		
Crush (*)	IEC 60794-1-21, method E3	Duration Recovery time	1 min 1 hour	Load (plate/plate) 2000 N		
Pressure withstand (**)	IEC 60794-1-22, method F13	Test length Temperature Duration	1 m 60 °C 30 min	Pressure (water) 15 bar		
Coefficient of friction (COF)	S 201-10150	Wheel Test Without adding I	lubricant	≤ 0,1		

Acceptance criteria:

- (*) After the test, under visual examination, without magnification, there shall be no damage and the tested sample shall pass the inner clearance test (***). If a recovery time is defined, the inner clearance test is done after the recovery time.
- (**) Under visual examination, without magnification, there shall be no damage to the tested microduct.
- (***) Inner clearance test is done by passing a metal sphere through the tested section of microduct or microduct assembly. The minimum diameter of the sphere is 85% of the nominal microduct bore diameter (ID). The test is passed if the sphere passes through the microduct.

© Nestor Cables Ltd. 2020. 22.4.2020